Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Front Immunol ; 13: 1072702, 2022.
Article in English | MEDLINE | ID: covidwho-2306569

ABSTRACT

The diversity of three hypervariable loops in antibody heavy chain and light chain, termed the complementarity-determining regions (CDRs), defines antibody's binding affinity and specificity owing to the direct contact between the CDRs and antigens. These CDR regions typically contain tyrosine (Tyr) residues that are known to engage in both nonpolar and pi stacking interaction with antigens through their complementary aromatic ring side chains. Nearly two decades ago, sulfotyrosine residue (sTyr), a negatively charged Tyr formed by Golgi-localized membrane-bound tyrosylprotein sulfotransferases during protein trafficking, were also found in the CDR regions and shown to play an important role in modulating antibody-antigen interaction. This breakthrough finding demonstrated that antibody repertoire could be further diversified through post-translational modifications, in addition to the conventional genetic recombination. This review article summarizes the current advances in the understanding of the Tyr-sulfation modification mechanism and its application in potentiating protein-protein interaction for antibody engineering and production. Challenges and opportunities are also discussed.


Subject(s)
Complementarity Determining Regions , Immunoglobulin Heavy Chains , Complementarity Determining Regions/genetics , Immunoglobulin Heavy Chains/genetics , Antigens , Golgi Apparatus/metabolism , Tyrosine/metabolism
2.
Front Immunol ; 14: 1111385, 2023.
Article in English | MEDLINE | ID: covidwho-2257661

ABSTRACT

Emerging SARS-CoV-2 variants have accrued mutations within the spike protein rendering most therapeutic monoclonal antibodies against COVID-19 ineffective. Hence there is an unmet need for broad-spectrum mAb treatments for COVID-19 that are more resistant to antigenically drifted SARS-CoV-2 variants. Here we describe the design of a biparatopic heavy-chain-only antibody consisting of six antigen binding sites recognizing two distinct epitopes in the spike protein NTD and RBD. The hexavalent antibody showed potent neutralizing activity against SARS-CoV-2 and variants of concern, including the Omicron sub-lineages BA.1, BA.2, BA.4 and BA.5, whereas the parental components had lost Omicron neutralization potency. We demonstrate that the tethered design mitigates the substantial decrease in spike trimer affinity seen for escape mutations for the hexamer components. The hexavalent antibody protected against SARS-CoV-2 infection in a hamster model. This work provides a framework for designing therapeutic antibodies to overcome antibody neutralization escape of emerging SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Immunoglobulin Heavy Chains/genetics , Antibodies, Monoclonal
3.
Front Immunol ; 14: 996119, 2023.
Article in English | MEDLINE | ID: covidwho-2255971

ABSTRACT

One gene, the immunoglobulin heavy chain (IgH) gene, is responsible for the expression of all the different antibody isotypes. Transcriptional regulation of the IgH gene is complex and involves several regulatory elements including a large element at the 3' end of the IgH gene locus (3'RR). Animal models have demonstrated an essential role of the 3'RR in the ability of B cells to express high affinity antibodies and to express different antibody classes. Additionally, environmental chemicals such as aryl hydrocarbon receptor (AhR) ligands modulate mouse 3'RR activity that mirrors the effects of these chemicals on antibody production and immunocompetence in mouse models. Although first discovered as a mediator of the toxicity induced by the high affinity ligand 2,3,7,8-tetracholordibenzo-p-dioxin (dioxin), understanding of the AhR has expanded to a physiological role in preserving homeostasis and maintaining immunocompetence. We posit that the AhR also plays a role in human antibody production and that the 3'RR is not only an IgH regulatory node but also an environmental sensor receiving signals through intrinsic and extrinsic pathways, including the AhR. This review will 1) highlight the emerging role of the AhR as a key transducer between environmental signals and altered immune function; 2) examine the current state of knowledge regarding IgH gene regulation and the role of the AhR in modulation of Ig production; 3) describe the evolution of the IgH gene that resulted in species and population differences; and 4) explore the evidence supporting the environmental sensing capacity of the 3'RR and the AhR as a transducer of these cues. This review will also underscore the need for studies focused on human models due to the premise that understanding genetic differences in the human population and the signaling pathways that converge at the 3'RR will provide valuable insight into individual sensitivities to environmental factors and antibody-mediated disease conditions, including emerging infections such as SARS-CoV-2.


Subject(s)
COVID-19 , Receptors, Aryl Hydrocarbon , Mice , Animals , Humans , Immunoglobulin Heavy Chains/genetics , Cues , SARS-CoV-2/metabolism
4.
Nature ; 611(7935): 352-357, 2022 11.
Article in English | MEDLINE | ID: covidwho-2264293

ABSTRACT

The vertebrate adaptive immune system modifies the genome of individual B cells to encode antibodies that bind particular antigens1. In most mammals, antibodies are composed of heavy and light chains that are generated sequentially by recombination of V, D (for heavy chains), J and C gene segments. Each chain contains three complementarity-determining regions (CDR1-CDR3), which contribute to antigen specificity. Certain heavy and light chains are preferred for particular antigens2-22. Here we consider pairs of B cells that share the same heavy chain V gene and CDRH3 amino acid sequence and were isolated from different donors, also known as public clonotypes23,24. We show that for naive antibodies (those not yet adapted to antigens), the probability that they use the same light chain V gene is around 10%, whereas for memory (functional) antibodies, it is around 80%, even if only one cell per clonotype is used. This property of functional antibodies is a phenomenon that we call light chain coherence. We also observe this phenomenon when similar heavy chains recur within a donor. Thus, although naive antibodies seem to recur by chance, the recurrence of functional antibodies reveals surprising constraint and determinism in the processes of V(D)J recombination and immune selection. For most functional antibodies, the heavy chain determines the light chain.


Subject(s)
Antibodies , Clonal Selection, Antigen-Mediated , Immunoglobulin Heavy Chains , Immunoglobulin Light Chains , Animals , Amino Acid Sequence , Antibodies/chemistry , Antibodies/genetics , Antibodies/immunology , Antigens/chemistry , Antigens/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/immunology , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Mammals , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Immunologic Memory , V(D)J Recombination , Clonal Selection, Antigen-Mediated/genetics , Clonal Selection, Antigen-Mediated/immunology
5.
Immunity ; 56(1): 193-206.e7, 2023 01 10.
Article in English | MEDLINE | ID: covidwho-2149893

ABSTRACT

The human immunoglobulin heavy-chain (IGH) locus is exceptionally polymorphic, with high levels of allelic and structural variation. Thus, germline IGH genotypes are personal, which may influence responses to infection and vaccination. For an improved understanding of inter-individual differences in antibody responses, we isolated SARS-CoV-2 spike-specific monoclonal antibodies from convalescent health care workers, focusing on the IGHV1-69 gene, which has the highest level of allelic variation of all IGHV genes. The IGHV1-69∗20-using CAB-I47 antibody and two similar antibodies isolated from an independent donor were critically dependent on allele usage. Neutralization was retained when reverting the V region to the germline IGHV1-69∗20 allele but lost when reverting to other IGHV1-69 alleles. Structural data confirmed that two germline-encoded polymorphisms, R50 and F55, in the IGHV1-69 gene were required for high-affinity receptor-binding domain interaction. These results demonstrate that polymorphisms in IGH genes can influence the function of SARS-CoV-2 neutralizing antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunoglobulin Heavy Chains/genetics , COVID-19/genetics , Antibodies, Viral , Polymorphism, Genetic , Antibodies, Neutralizing , Germ Cells
6.
Exp Oncol ; 44(3): 208-212, 2022 11.
Article in English | MEDLINE | ID: covidwho-2092132

ABSTRACT

BACKGROUND: Identification of epitopes recognized by leukemic B cells could provide insights into the molecular mechanisms of B cell transformation in chronic lymphocytic leukemia (CLL). The aim of this paper was to compare nucleotide sequences of immunoglobulin heavy chain variable region (IGHV) genes in CLL with known sequences directed against antigens of different origins available in public databases. MATERIALS AND METHODS: Analysis was performed in the groups of 412 unselected CLL patients with productive IGHV gene using polymerase chain reaction followed by direct sequencing. RESULTS: Homology between CLL Ig sequences and antibodies directed against autoantigens was found in 12 patients (2.9%), homology between CLL Ig sequences and antiviral antibodies - in 35 patients (8.5%). Most of these sequences belonged to stereotypical clusters. Among the sequences that have homology to antiviral antibodies, the most prevalent were cases homologous with antibodies against HIV (14 cases, 3.4%) and SARS-CoV-2 antigens (10 cases, 2.4%). None of the patients in our cohort was HIV-infected and the study was conducted before the emergence of SARS-CoV-2 virus. CONCLUSIONS: Suggestions could be made about the possible impact of past infection of SARS-CoV-2 virus on the pathogenesis of CLL. In particular, an increase in the proportion of CLL cases with the expression of some stereotyped BCR and/or an increase of CLL risk in the long-term period after SARS-CoV-2 virus infection is not excluded. This assumption needs to be verified by epidemiological data.


Subject(s)
COVID-19 , HIV Infections , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Immunoglobulin Heavy Chains/genetics , Amino Acid Sequence , SARS-CoV-2/genetics , Immunoglobulin Variable Region/genetics , HIV Infections/epidemiology , HIV Infections/complications , Antiviral Agents
7.
Cell Syst ; 13(10): 808-816.e5, 2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2075982

ABSTRACT

Human immunoglobulin heavy chain (IGH) locus on chromosome 14 includes more than 40 functional copies of the variable gene (IGHV), which are critical for the structure of antibodies that identify and neutralize pathogenic invaders as a part of the adaptive immune system. Because of its highly repetitive sequence composition, the IGH locus has been particularly difficult to assemble or genotype when using standard short-read sequencing technologies. Here, we introduce ImmunoTyper-SR, an algorithmic tool for the genotyping and CNV analysis of the germline IGHV genes on Illumina whole-genome sequencing (WGS) data using a combinatorial optimization formulation that resolves ambiguous read mappings. We have validated ImmunoTyper-SR on 12 individuals, whose IGHV allele composition had been independently validated, as well as concordance between WGS replicates from nine individuals. We then applied ImmunoTyper-SR on 585 COVID patients to investigate the associations between IGHV alleles and anti-type I IFN autoantibodies, which were previously associated with COVID-19 severity.


Subject(s)
COVID-19 , Immunoglobulin Variable Region , Humans , Immunoglobulin Variable Region/genetics , Genotype , COVID-19/genetics , High-Throughput Nucleotide Sequencing , Immunoglobulin Heavy Chains/genetics , Autoantibodies/genetics
8.
Proc Natl Acad Sci U S A ; 119(34): e2201541119, 2022 08 23.
Article in English | MEDLINE | ID: covidwho-1984598

ABSTRACT

Whereas pathogen-specific T and B cells are a primary focus of interest during infectious disease, we have used COVID-19 to ask whether their emergence comes at a cost of broader B cell and T cell repertoire disruption. We applied a genomic DNA-based approach to concurrently study the immunoglobulin-heavy (IGH) and T cell receptor (TCR) ß and δ chain loci of 95 individuals. Our approach detected anticipated repertoire focusing for the IGH repertoire, including expansions of clusters of related sequences temporally aligned with SARS-CoV-2-specific seroconversion, and enrichment of some shared SARS-CoV-2-associated sequences. No significant age-related or disease severity-related deficiencies were noted for the IGH repertoire. By contrast, whereas focusing occurred at the TCRß and TCRδ loci, including some TCRß sequence-sharing, disruptive repertoire narrowing was almost entirely limited to many patients aged older than 50 y. By temporarily reducing T cell diversity and by risking expansions of nonbeneficial T cells, these traits may constitute an age-related risk factor for COVID-19, including a vulnerability to new variants for which T cells may provide key protection.


Subject(s)
Adaptive Immunity , COVID-19 , Immunoglobulin Heavy Chains , Receptors, Antigen, T-Cell, alpha-beta , Receptors, Antigen, T-Cell , SARS-CoV-2 , Adaptive Immunity/genetics , Aged , B-Lymphocytes/immunology , COVID-19/genetics , COVID-19/immunology , Genetic Loci , Humans , Immunoglobulin Heavy Chains/genetics , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , SARS-CoV-2/immunology , Seroconversion , T-Lymphocytes/immunology
9.
Cell Rep ; 38(7): 110393, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1719435

ABSTRACT

B cells are important in immunity to both severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and vaccination, but B cell receptor (BCR) repertoire development in these contexts has not been compared. We analyze serial samples from 171 SARS-CoV-2-infected individuals and 63 vaccine recipients and find the global BCR repertoire differs between them. Following infection, immunoglobulin (Ig)G1/3 and IgA1 BCRs increase, somatic hypermutation (SHM) decreases, and, in severe disease, IgM and IgA clones are expanded. In contrast, after vaccination, the proportion of IgD/M BCRs increase, SHM is unchanged, and expansion of IgG clones is prominent. VH1-24, which targets the N-terminal domain (NTD) and contributes to neutralization, is expanded post infection except in the most severe disease. Infection generates a broad distribution of SARS-CoV-2-specific clones predicted to target the spike protein, while a more focused response after vaccination mainly targets the spike's receptor-binding domain. Thus, the nature of SARS-CoV-2 exposure differentially affects BCR repertoire development, potentially informing vaccine strategies.


Subject(s)
COVID-19/immunology , Receptors, Antigen, B-Cell/immunology , Vaccination , B-Lymphocytes/immunology , BNT162 Vaccine/immunology , COVID-19/prevention & control , Clonal Evolution , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Isotypes/genetics , Immunoglobulin Isotypes/immunology , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Kinetics , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2/immunology , Severity of Illness Index , Somatic Hypermutation, Immunoglobulin/immunology , Spike Glycoprotein, Coronavirus/immunology
10.
Int Immunopharmacol ; 101(Pt A): 108292, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1487772

ABSTRACT

Leukopenia is a common manifestation of many diseases, including global outbreak SAS-CoV-2 infection. Granulocyte-macrophage colony-stimulating factor (GM -CSF) has been proved to be effective in promoting lymphocyte regeneration, but adverse immunological effects have also emerged. This study aim to investigate the effect of GM -CSF on BCR heavy chain CDR3 repertoire while promoting lymphocyte regeneration. Cyclophosphamide (CTX) and GM -CSF were used to inhibit and stimulate bone marrow hematopoiesis, respectively. High throughput sequencing was applied to detect the characteristics of BCR CDR3 repertoire in controls, CTX group and GM -CSF group. The white blood cells (WBCs) were quickly reduced (P < 0.05) with lymphocytes decreasing causing by CTX, and the WBCs and lymphocytes returned to the level of controls after GM -CSF treatment. The diversity of BCR heavy chain CDR3 repertoire was also significantly decreased in CTX group. Although there is still a big gap from the controls, the diversity was picked up after GM -CSF treatment. The expression of IGHD01-01, IGHD02-14 and IGHJ04-01 with high-frequency usage regularly and significantly changed in three groups, and many genes with low-frequency usage lost in CTX group and did not reappear in GM -CSF group. Moreover, two shared sequences and accounted for the highest proportion in GM -CSF group have been detected in animal model of chronic lymphocytic leukemia. These results revealed that GM -CSF can partially restore changes in the BCR heavy chain CDR3 repertoire while promoting lymphocyte regeneration, but it may also lead to rearrangement, proliferation and activation of abnormal B cells, which can provide a basis for further study on the adverse immunological effects and mechanism of GM -CSF treatment.


Subject(s)
Cyclophosphamide/adverse effects , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Leukopenia/immunology , Lymphocytes/drug effects , Lymphocytes/immunology , Receptors, Antigen, B-Cell/drug effects , Receptors, Antigen, B-Cell/metabolism , Animals , Complementarity Determining Regions/drug effects , Complementarity Determining Regions/genetics , Complementarity Determining Regions/metabolism , Cyclophosphamide/therapeutic use , Female , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Immunoglobulin Heavy Chains/drug effects , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/metabolism , Immunoglobulin Joining Region/drug effects , Immunoglobulin Joining Region/metabolism , Immunoglobulin Variable Region/drug effects , Immunoglobulin Variable Region/metabolism , Leukocytes/drug effects , Leukopenia/chemically induced , Leukopenia/drug therapy , Lymphocytes/metabolism , Mice, Inbred BALB C , Receptors, Antigen, B-Cell/immunology
11.
Cell Rep ; 37(1): 109771, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1439919

ABSTRACT

Understanding mechanisms of protective antibody recognition can inform vaccine and therapeutic strategies against SARS-CoV-2. We report a monoclonal antibody, 910-30, targeting the SARS-CoV-2 receptor-binding site for ACE2 as a member of a public antibody response encoded by IGHV3-53/IGHV3-66 genes. Sequence and structural analyses of 910-30 and related antibodies explore how class recognition features correlate with SARS-CoV-2 neutralization. Cryo-EM structures of 910-30 bound to the SARS-CoV-2 spike trimer reveal binding interactions and its ability to disassemble spike. Despite heavy-chain sequence similarity, biophysical analyses of IGHV3-53/3-66-encoded antibodies highlight the importance of native heavy:light pairings for ACE2-binding competition and SARS-CoV-2 neutralization. We develop paired heavy:light class sequence signatures and determine antibody precursor prevalence to be ∼1 in 44,000 human B cells, consistent with public antibody identification in several convalescent COVID-19 patients. These class signatures reveal genetic, structural, and functional immune features that are helpful in accelerating antibody-based medical interventions for SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Aged , Angiotensin-Converting Enzyme 2/chemistry , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/ultrastructure , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation , B-Lymphocytes/immunology , Binding Sites , Chlorocebus aethiops , Cryoelectron Microscopy , HEK293 Cells , Humans , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/ultrastructure , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Immunoglobulin Light Chains/ultrastructure , Male , Protein Binding , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Vero Cells
12.
JCI Insight ; 6(9)2021 05 10.
Article in English | MEDLINE | ID: covidwho-1243741

ABSTRACT

Abs that neutralize SARS-CoV-2 are thought to provide the most immediate and effective treatment for those severely afflicted by this virus. Because coronavirus potentially diversifies by mutation, broadly neutralizing Abs are especially sought. Here, we report a possibly novel approach to rapid generation of potent broadly neutralizing human anti-SARS-CoV-2 Abs. We isolated SARS-CoV-2 spike protein-specific memory B cells by panning from the blood of convalescent subjects after infection with SARS-CoV-2 and sequenced and expressed Ig genes from individual B cells as human mAbs. All of 43 human mAbs generated in this way neutralized SARS-CoV-2. Eighteen of the forty-three human mAbs exhibited half-maximal inhibitory concentrations (IC50) of 6.7 × 10-12 M to 6.7 × 10-15 M for spike-pseudotyped virus. Seven of the human mAbs also neutralized (with IC50 < 6.7 × 10-12 M) viruses pseudotyped with mutant spike proteins (including receptor-binding domain mutants and the S1 C-terminal D614G mutant). Neutralization of the Wuhan Hu-1 founder strain and of some variants decreased when coding sequences were reverted to germline, suggesting that potency of neutralization was acquired by somatic hypermutation and selection of B cells. These results indicate that infection with SARS-CoV-2 evokes high-affinity B cell responses, some products of which are broadly neutralizing and others highly strain specific. We also identify variants that would potentially resist immunity evoked by infection with the Wuhan Hu-1 founder strain or by vaccines developed with products of that strain, suggesting evolutionary courses that SARS-CoV-2 could take.


Subject(s)
Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibody Specificity , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/genetics , COVID-19/therapy , COVID-19/virology , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/genetics , Immunologic Memory , Middle Aged , Neutralization Tests , Pandemics , SARS-CoV-2/genetics , Somatic Hypermutation, Immunoglobulin , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
13.
Blood ; 137(10): 1365-1376, 2021 03 11.
Article in English | MEDLINE | ID: covidwho-1127679

ABSTRACT

Chronic lymphocytic leukemia (CLL) is characterized by the existence of subsets of patients with (quasi)identical, stereotyped B-cell receptor (BcR) immunoglobulins. Patients in certain major stereotyped subsets often display remarkably consistent clinicobiological profiles, suggesting that the study of BcR immunoglobulin stereotypy in CLL has important implications for understanding disease pathophysiology and refining clinical decision-making. Nevertheless, several issues remain open, especially pertaining to the actual frequency of BcR immunoglobulin stereotypy and major subsets, as well as the existence of higher-order connections between individual subsets. To address these issues, we investigated clonotypic IGHV-IGHD-IGHJ gene rearrangements in a series of 29 856 patients with CLL, by far the largest series worldwide. We report that the stereotyped fraction of CLL peaks at 41% of the entire cohort and that all 19 previously identified major subsets retained their relative size and ranking, while 10 new ones emerged; overall, major stereotyped subsets had a cumulative frequency of 13.5%. Higher-level relationships were evident between subsets, particularly for major stereotyped subsets with unmutated IGHV genes (U-CLL), for which close relations with other subsets, termed "satellites," were identified. Satellite subsets accounted for 3% of the entire cohort. These results confirm our previous notion that major subsets can be robustly identified and are consistent in relative size, hence representing distinct disease variants amenable to compartmentalized research with the potential of overcoming the pronounced heterogeneity of CLL. Furthermore, the existence of satellite subsets reveals a novel aspect of repertoire restriction with implications for refined molecular classification of CLL.


Subject(s)
Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Gene Frequency , Gene Rearrangement , Humans , Somatic Hypermutation, Immunoglobulin
14.
Science ; 369(6507): 1119-1123, 2020 08 28.
Article in English | MEDLINE | ID: covidwho-654485

ABSTRACT

Molecular understanding of neutralizing antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could accelerate vaccine design and drug discovery. We analyzed 294 anti-SARS-CoV-2 antibodies and found that immunoglobulin G heavy-chain variable region 3-53 (IGHV3-53) is the most frequently used IGHV gene for targeting the receptor-binding domain (RBD) of the spike protein. Co-crystal structures of two IGHV3-53-neutralizing antibodies with RBD, with or without Fab CR3022, at 2.33- to 3.20-angstrom resolution revealed that the germline-encoded residues dominate recognition of the angiotensin I converting enzyme 2 (ACE2)-binding site. This binding mode limits the IGHV3-53 antibodies to short complementarity-determining region H3 loops but accommodates light-chain diversity. These IGHV3-53 antibodies show minimal affinity maturation and high potency, which is promising for vaccine design. Knowledge of these structural motifs and binding mode should facilitate the design of antigens that elicit this type of neutralizing response.


Subject(s)
Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Antibody Formation , Betacoronavirus/immunology , Complementarity Determining Regions/chemistry , Coronavirus Infections/prevention & control , Immunoglobulin Heavy Chains/chemistry , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Binding Sites , COVID-19 , COVID-19 Vaccines , Complementarity Determining Regions/genetics , Complementarity Determining Regions/immunology , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Crystallography, X-Ray , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Pneumonia, Viral/immunology , Protein Domains , SARS-CoV-2 , Viral Vaccines/chemistry , Viral Vaccines/genetics , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL